

The Sound Dimension: Speech and Audio in Multimodal AI

Vineet Gandhi

Associate Professor

Center for Visual Information Technology

Why? How? What? Where?

Speech and Audio in MAI

Excellent survey paper

Baltrusaitis et al. Multimodal Machine Learning: A Survey and

Taxonomy. TPAMI 2019

HUMAN LEARNING IS INHERENTLY MULTIMODAL

And more importantly, we will miss out a lot of fun applications/use-cases

Key Speech problems

Multimodal processing has transformed Speaker Recognition

Some basics to help my argument

$$f(t) = \sin(2\pi \cdot 39t) + 0.5\sin(2\pi \cdot 15t)$$

Another example sound signal

$$g(t) = \begin{cases} 2 * \sin(2\pi \cdot 39t), 0 \le t \le 1/2\\ \sin(2\pi \cdot 15t), 1/2 < t \le 1 \end{cases}$$

Spectrogram

Spectrogram of a piecewise monochromatic signal.

Lighter color indicates greater DFT magnitude

Spectrogram

Wave as a combination of sine waves

Utterance of word zero

Transforming speaker verification/identification

VoxCeleb2

VoxCeleb2 contains over a million utterances for 6,112 identities.

VoxCeleb: automated data collection

SyncNet

Solves three tasks

- Determining the lip-sync error in videos
- Detecting the speaker in a scene with multiple faces
- Lip reading

VoxCeleb performance

Accuracy	Top-1 (%)	Top-5 (%)
I-vectors + SVM	49.0	56.6
I-vectors + PLDA + SVM	60.8	75.6
CNN-fc-3s no var. norm.	63.5	80.3
CNN-fc-3s	72.4	87.4
CNN	80.5	92.1

Transformation through transformers

Transformers and Self-Supervision

- 1. Shared pool of architectural insights
 - Models like HuBERT, wav2vec 2.0, and Whisper borrow architectural insights (e.g., Transformers, masked modeling) from NLP
- 2. Language Models Enhance ASR Decoding
 - Leads to better handling of rare words, disfluencies, and long-range dependencies

HuBERT Training Process

Alternate between two steps

STEP 1: Discover "hidden units" targets

as targets to predict

STEP 2: Predict targets at masked positions

Hidden units *e*₂ embeddings K-Means Clustering Assign each feature vector X+ to a hidden unit

Clustering Feature Extraction

Re-use intermediate layer features for better clustering <-----

Compute directly from

Cross-Entropy Loss Use hidden units

(Predict hidden units at masked locations)

Context Network

(Transformer Encoder)

Latent Feature Encoder

(Convolutional Network)

cluster

jonathanbgn.com

Use context

for prediction

Hubert (speech resynthesis)

Polyak et al. Speech Resynthesis from Discrete Disentangled Self-Supervised Representations. Interspeech 2021

Wav2Vec 2.0

Wav2Vec 2.0

Whisper

- Trained on 680K hours of multilingual, multitask web data
- Robust to accents, noise, and technical terms
- Supports multilingual transcription and translation to English
- Whisper doesn't
 outperform models on
 LibriSpeech but is
 significantly more robust in
 zero-shot settings, with 50%
 fewer errors across varied
 datasets.

Thinking multimodal, opens-up possibilities

Vocal learning forms the first phase of infants starting to talk (Locke, 1996, 1994) by simply listening to sounds/speech. It is hypothesized (Kuhl and Meltzoff, 1996) that infants listening to ambient language store perceptually derived representations of the speech sounds they hear, which in turn serve as targets for the production of speech utterances. Interestingly, in this phase, the infant has no conception of text or linguistic rules, and speech is considered sufficient to influence speech production (Kuhl and Meltzoff, 1996) as can parrots (Locke, 1994).

Shah et al. ParrotTTS: Text-to-speech synthesis exploiting disentangled self-supervised representations. EACL Findings 2024

	Model	MOS ↑	WER↓
Traditional TTS	SS-FastSpeech2	3.87	4.52
	SS-Tacotron2	3.90	4.59
	FastSpeech2-SupASR	3.78	4.72
	Tacotron2-UnsupASR	3.50	11.3
WavThruVec	SS-WavThruVec	3.57	6.27
VQ-VAE	SS-VQ-VAES	3.12	21.78
ParrotTTS	AR-TTE _{LJS} +SS-ETS	3.85	4.80
	$NAR-TTE_{LJS}+SS-ETS$	3.86	4.58
	NAR-TTE $_{\frac{1}{2}LJS}$ +SS-ETS	3.81	6.14

Table 1: Subjective and objective comparison of TTS models in the single speaker setting.

Model	VCTK	MOS ↑	WER ↓	EER ↓
GT-Mel+Vocoder	Yes	4.12	2.25	2.12
MS-FastSpeech2	Yes	3.62	5.32	3.21
MS-FastSpeech2-SupASR	No	3.58	6.65	3.85
VC-FastSpeech2	No	3.41	7.44	8.18
WavThruVec-MS	No	3.17	6.79	5.08
NAR-TTE _{LJS} +MS-ETS	No	3.78	6.53	4.38

Table 2: Comparison of the multi-speaker TTS models on the VCTK dataset. Column 2 indicates if the corresponding method uses VCTK transcripts while training.

Lip Reading

Lip2Wav

The speech you are hearing is completely generated from the lip movements

Lip2Wav

RobustL2s

Sahipjohn et al. RobustL2S: Speaker-Specific Lip-to-speech Synthesis exploiting Self-Supervised Representations. APSIPA 2023

RobustL2S

TABLE II
PERFORMANCE COMPARISON IN CONSTRAINED-SPEAKER SETTING ON
GRID-4S DATASET

Method	STOI ↑	ESTOI ↑	WER ↓
Vid2speech [13]	0.491	0.335	44.92 %
Lip2AudSpec [15]	0.513	0.352	32.51 %
1D GAN-based [17]	0.564	0.361	26.64 %
Vocoder-based [40]	0.648	0.455	23.33 %
Ephrat et al. [14]	0.659	0.376	27.83 %
Lip2Wav [5]	0.731	0.535	14.08 %
VAE-based [16]	0.724	0.540	-
VCA-GAN [19]	0.724	0.609	12.25 %
kim et al. [28], [46]	0.738	0.579	-
RobustL2S	0.754	0.571	11.21 %

TABLE III
PERFORMANCE COMPARISON IN CONSTRAINED-SPEAKER SETTING ON
TCD-TIMIT-3S DATASET

Method	STOI ↑	ESTOI ↑	WER ↓
Vid2speech [13]	0.451	0.298	75.52 %
Lip2AudSpec [15]	0.450	0.316	61.86 %
1D GAN-based [17]	0.511	0.321	49.13 %
Ephrat et al. [14]	0.487	0.310	53.52 %
Lip2Wav [5]	0.558	0.365	31.26 %
VCA-GAN [19]	0.584	0.401	-
RobustL2S	0.596	0.452	29.03 %

TABLE IV
PERFORMANCE COMPARISON IN SPEAKER-DEPENDENT SETTING ON LIP2WAY DATASET

Speaker	Method	STOI ↑	ESTOI ↑
	Ephrat et al. [5]	0.165	0.087
Chemistry	GAN-based [47]	0.192	0.132
Lectures	Lip2Wav [5]	0.416	0.284
(chem)	Hong et al. [28]	0.566	0.429
	RobustL2S	0.583	0.397
	Ephrat et al. [5]	0.184	0.098
Chess	GAN-based [47]	0.195	0.104
Analysis	Lip2Wav [5]	0.418	0.290
(chess)	Hong et al. [28]	0.506	0.334
	RobustL2S	0.517	0.340
	Ephrat et al. [5]	0.112	0.043
Deep	GAN-based [47]	0.144	0.070
Learning	Lip2Wav [5]	0.282	0.183
(dl)	Hong et al. [28]	0.576	0.402
	RobustL2S	0.627	0.419
	Ephrat et al. [5]	0.192	0.064
Hardware	GAN-based [47]	0.251	0.110
Security	Lip2Wav [5]	0.446	0.311
(hs)	Hong et al. [28]	0.504	0.337
	RobustL2S	0.511	0.337
	Ephrat et al. [5]	0.143	0.064
Ethical	GAN-based [47]	0.171	0.089
Hacking	Lip2Wav [5]	0.369	0.220
(eh)	Hong et al. [28]	0.463	0.304
8.59 5.	RobustL2S	0.493	0.277

RobustL2S

StethoSpeech

StethoSpeech

StethoSpeech: Speech generation through a clinical stethoscope attached to the skin

Tongue Ultrasound to speech

Prediction

Ground Truth

Many fun/useful ideas and possibilities

Wav2Lip

Prajwal et al. A Lip Sync Expert Is All You Need for Speech to Lip Generation In the Wild. ACM Multimedia 2020

preserve **speaker style** while lipsyncing

Avatars: Synthesia and others

Visual microphone

Davis et al. The Visual Microphone: Passive Recovery of Sound from Video. ACM Transactions on Graphics. 2014

(b) Input sound

(c) Recovered sound

The Visual Microphone: Passive Recovery of Sound from Video

Abe Davis
Michael Rubinstein
Neal Wadhwa
Gautham J. Mysore
Fredo Durand
William T. Freeman

Automated Cinematography

Original (Wide Angle Static)

Edited

AudioSet

There are 2,084,320 YouTube videos containing 527 labels

Type a sound to filter the dataset ho

Show detailed breakdown? □

Label	Quality estimate	? • Number of videos
Music	100%	1,011,305
Speech	100%	1,010,480
Vehicle	100%	128,051
Musical instrument	100%	117,343
Plucked string instrument	100%	44,565
Singing	100%	42,493
Car	100%	41,554
Animal	100%	40,758
Outside, rural or natural	100%	35,731
Violin, fiddle	100%	28,125
Bird	100%	26,894
Drum	100%	20,246
Engine	100%	16,245
Narration, monologue	100%	15,590
Drum kit	100%	15,169
Acoustic guitar	100%	14,568
Dog	100%	13,705
Child speech, kid speaking	100%	11,816
Bass drum	100%	9,292

https://research.google.com/audioset/

CLAP model

Multimodal distillation

Aytar et al. SoundNet: Learning Sound Representations from Unlabeled Video. Neurips 2016

Thank you!

