

# The Sound Dimension: Speech and Audio in Multimodal AI

Vineet Gandhi

Associate Professor

Center for Visual Information Technology

Why? How? What? Where?



Speech and Audio in MAI

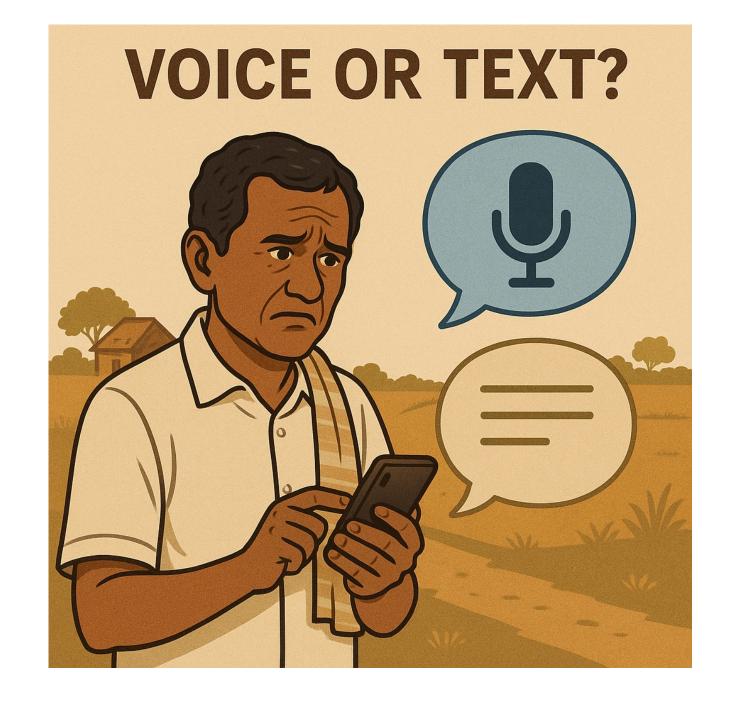
## Excellent survey paper

Baltrusaitis et al. Multimodal Machine Learning: A Survey and

Taxonomy. TPAMI 2019



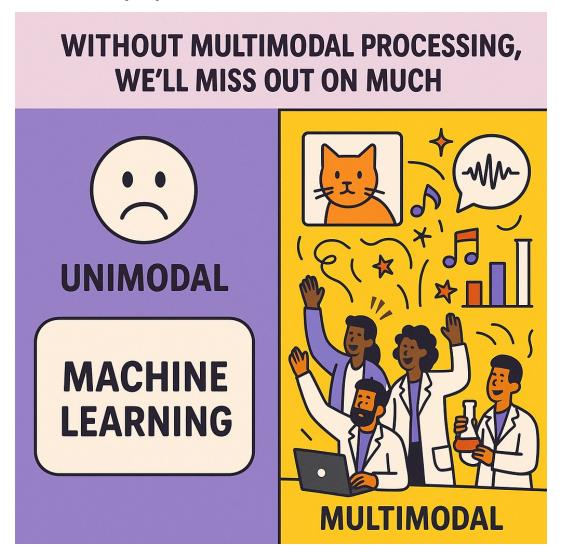




## HUMAN LEARNING IS INHERENTLY MULTIMODAL

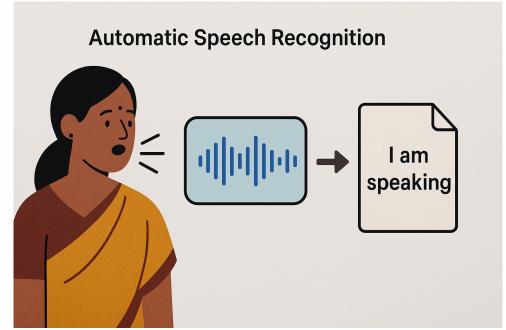


## And more importantly, we will miss out a lot of fun applications/use-cases



## Key Speech problems





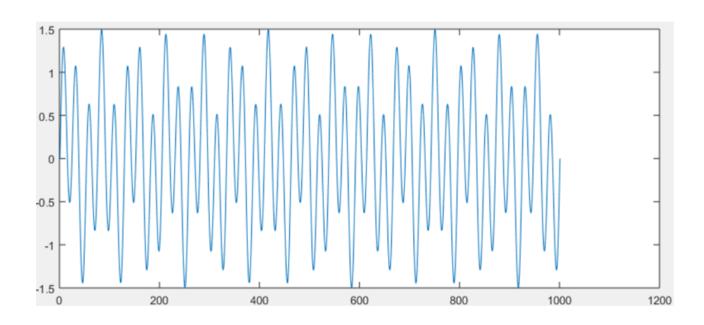


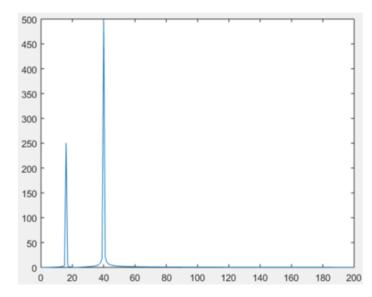
## Multimodal processing has transformed Speaker Recognition



### Some basics to help my argument

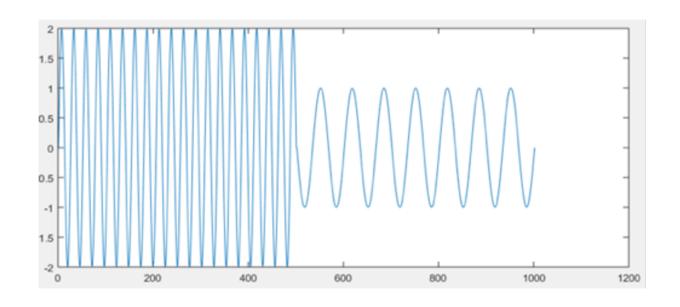
$$f(t) = \sin(2\pi \cdot 39t) + 0.5\sin(2\pi \cdot 15t)$$

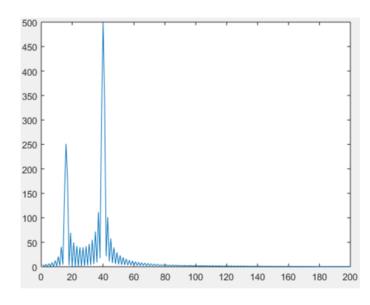




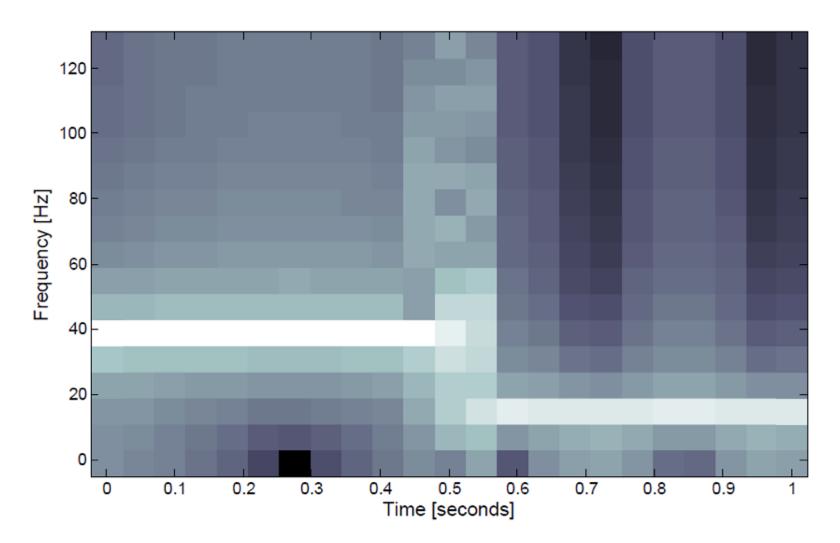
### Another example sound signal

$$g(t) = \begin{cases} 2 * \sin(2\pi \cdot 39t), 0 \le t \le 1/2\\ \sin(2\pi \cdot 15t), 1/2 < t \le 1 \end{cases}$$





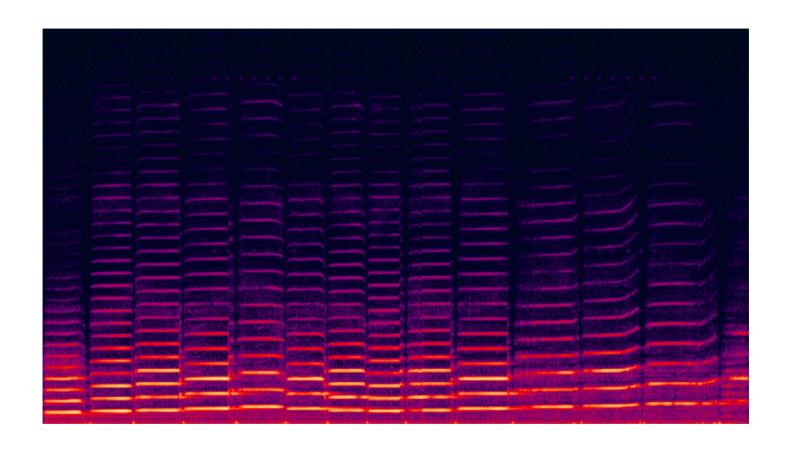
#### Spectrogram



Spectrogram of a piecewise monochromatic signal.

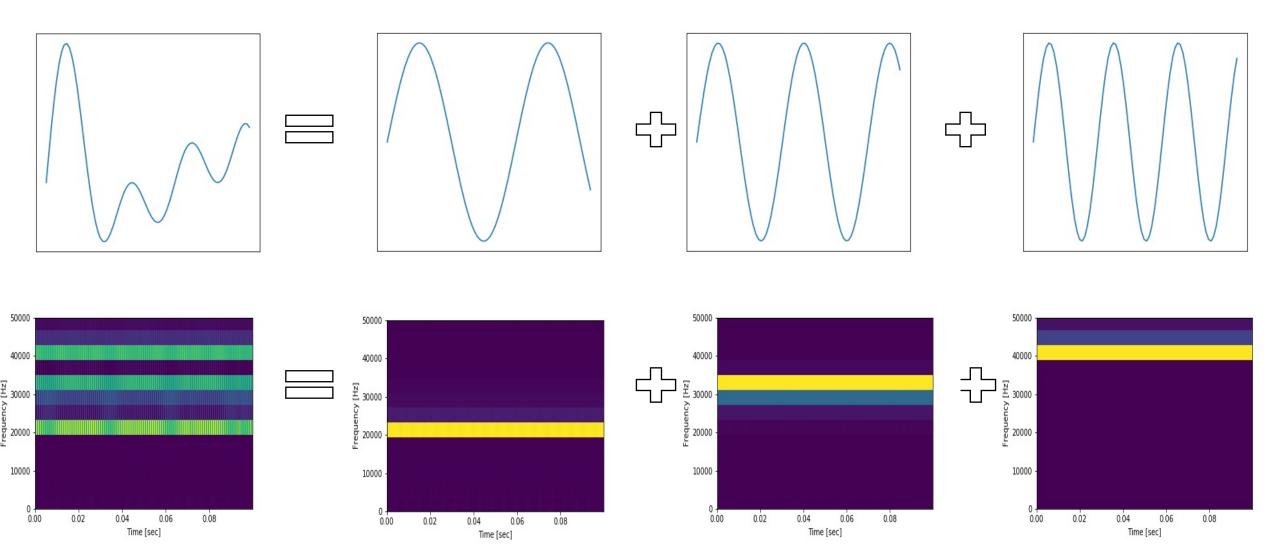
Lighter color indicates greater DFT magnitude

## Spectrogram





#### Wave as a combination of sine waves



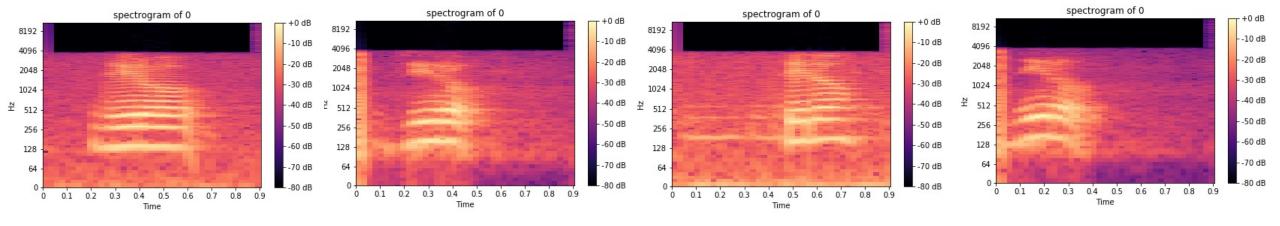
#### Utterance of word zero



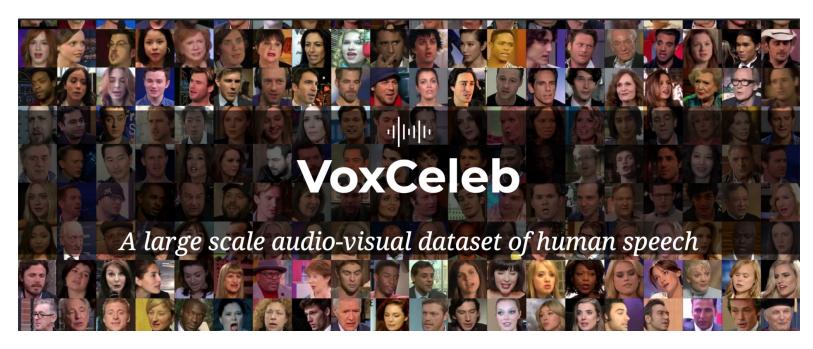






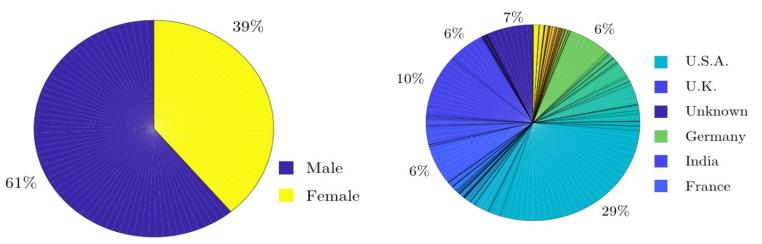


#### Transforming speaker verification/identification

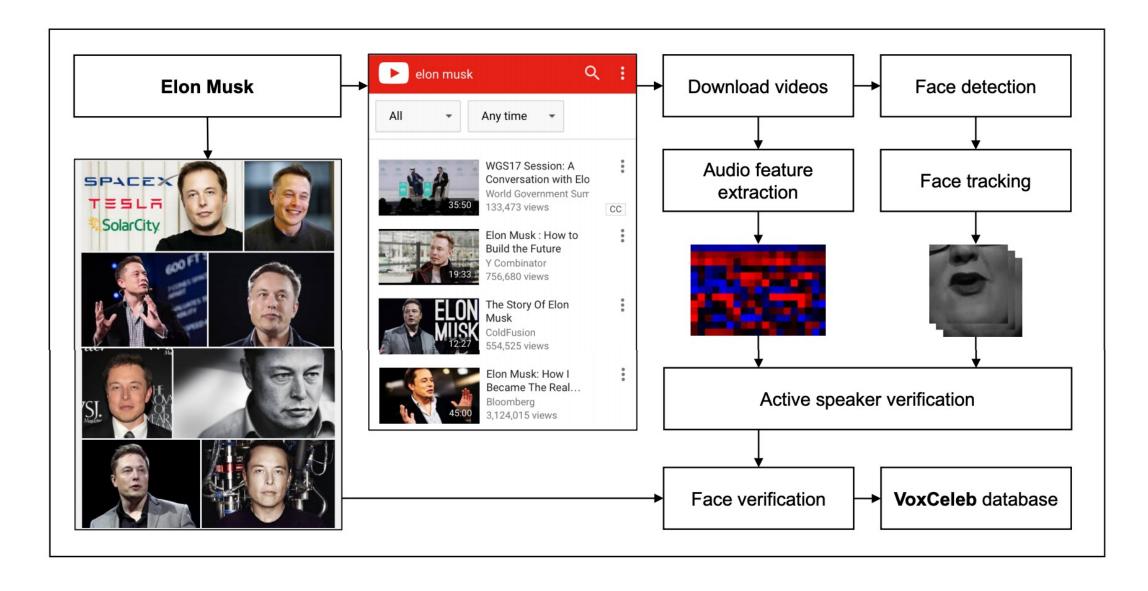


#### VoxCeleb2

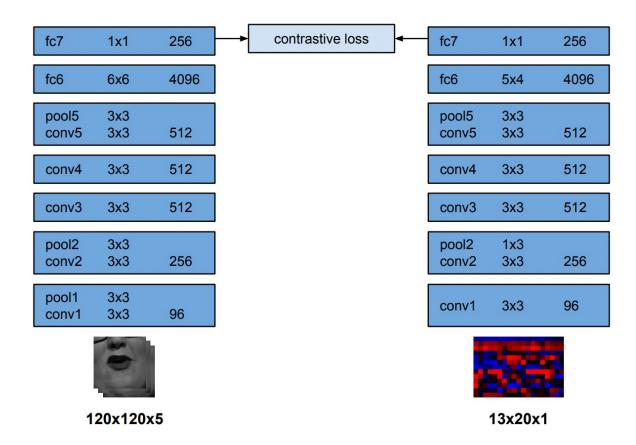
VoxCeleb2 contains over a million utterances for 6,112 identities.



#### VoxCeleb: automated data collection



#### SyncNet



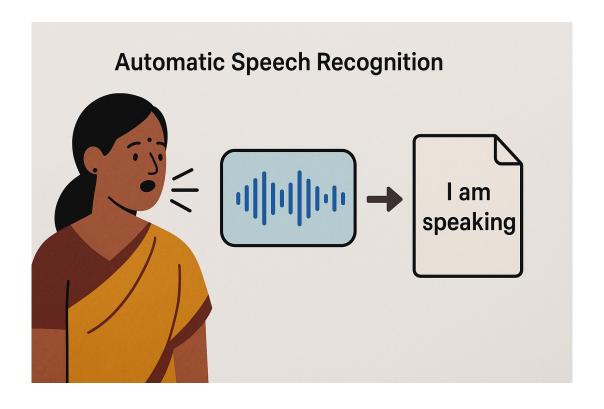
#### Solves three tasks

- Determining the lip-sync error in videos
- Detecting the speaker in a scene with multiple faces
- Lip reading

## VoxCeleb performance

| Accuracy                | Top-1 (%) | Top-5 (%) |
|-------------------------|-----------|-----------|
| I-vectors + SVM         | 49.0      | 56.6      |
| I-vectors + PLDA + SVM  | 60.8      | 75.6      |
| CNN-fc-3s no var. norm. | 63.5      | 80.3      |
| CNN-fc-3s               | 72.4      | 87.4      |
| CNN                     | 80.5      | 92.1      |

#### Transformation through transformers



#### Transformers and Self-Supervision

- 1. Shared pool of architectural insights
  - Models like HuBERT, wav2vec 2.0, and Whisper borrow architectural insights (e.g., Transformers, masked modeling) from NLP
- 2. Language Models Enhance ASR Decoding
  - Leads to better handling of rare words, disfluencies, and long-range dependencies

#### HuBERT Training Process

Alternate between two steps

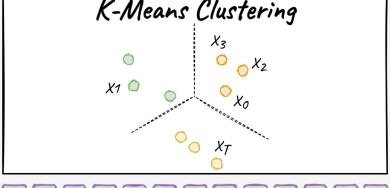
STEP 1: Discover "hidden units" targets

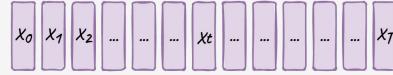


as targets to predict

STEP 2: Predict targets at masked positions

Hidden units *e*<sub>2</sub> embeddings K-Means Clustering Assign each feature vector X+ to a hidden unit





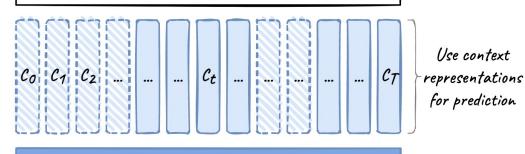
Clustering Feature Extraction

Re-use intermediate layer features for better clustering <-----

Compute directly from

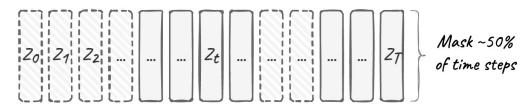
Cross-Entropy Loss Use hidden units

(Predict hidden units at masked locations)



Context Network

(Transformer Encoder)



Latent Feature Encoder

(Convolutional Network)

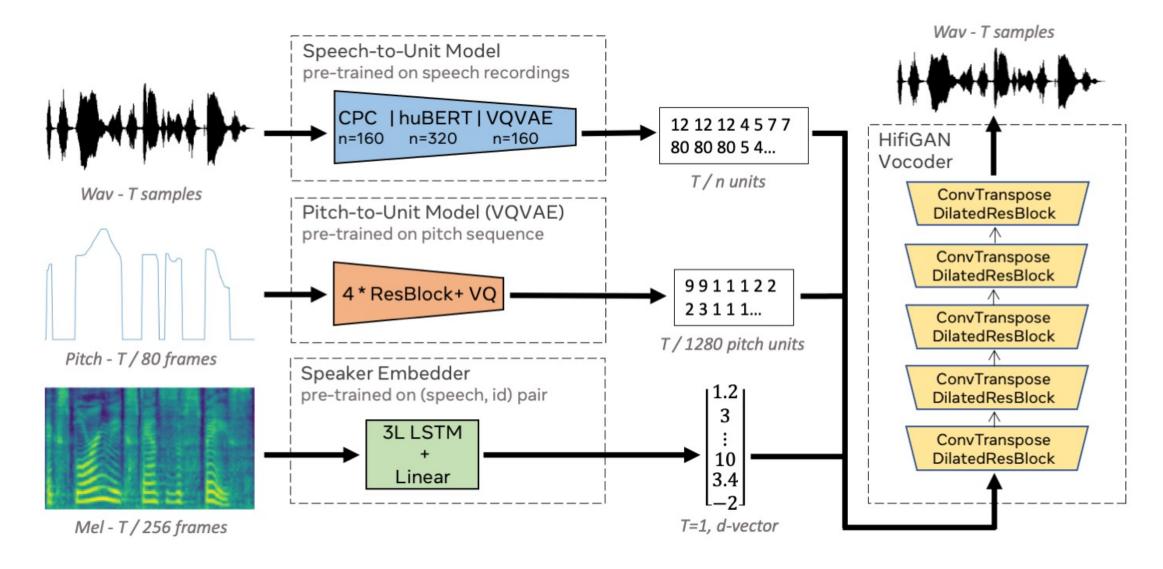
cluster

jonathanbgn.com

Use context

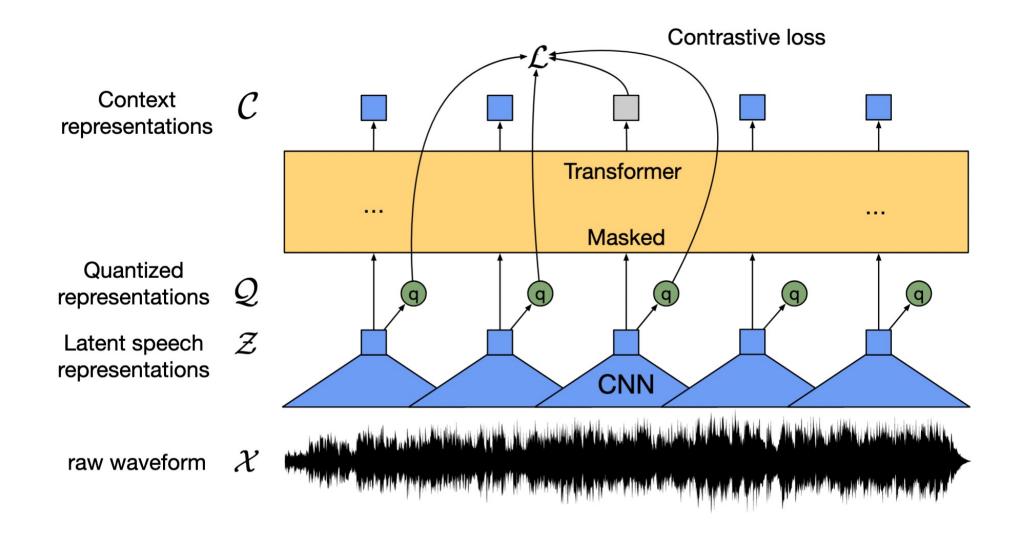
for prediction

### Hubert (speech resynthesis)

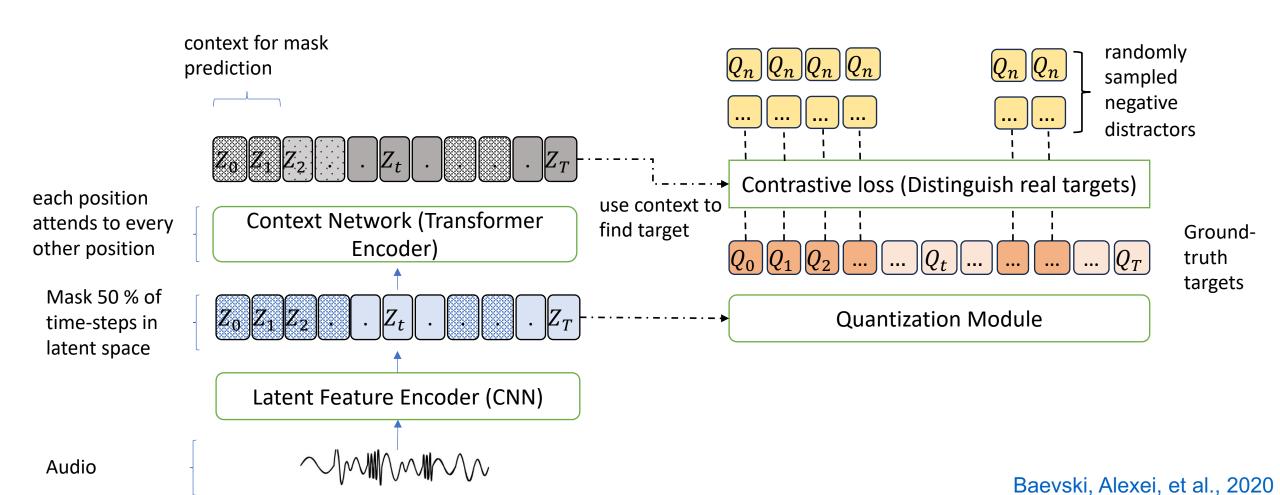


Polyak et al. Speech Resynthesis from Discrete Disentangled Self-Supervised Representations. Interspeech 2021

#### Wav2Vec 2.0

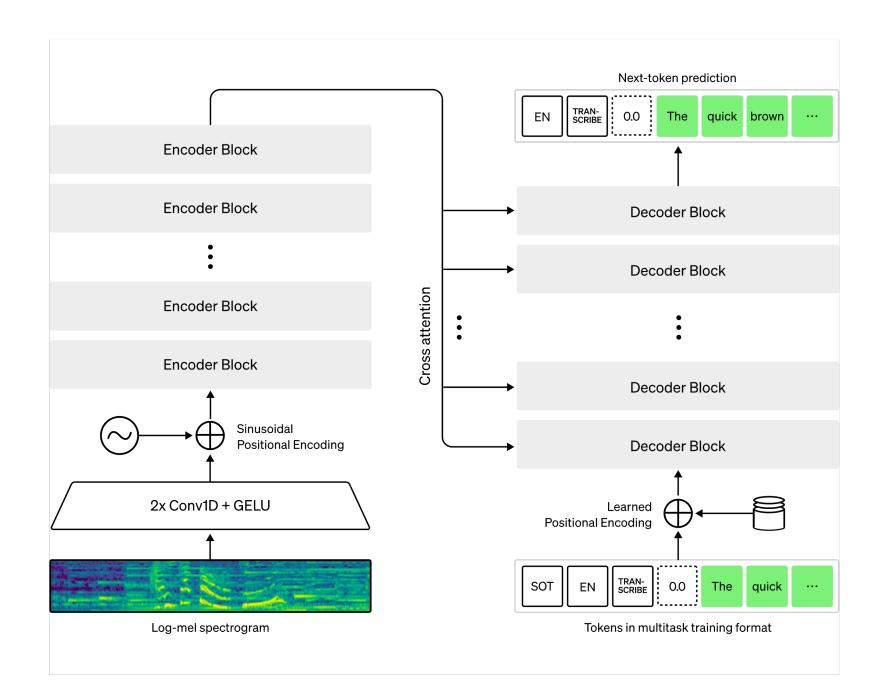


#### Wav2Vec 2.0

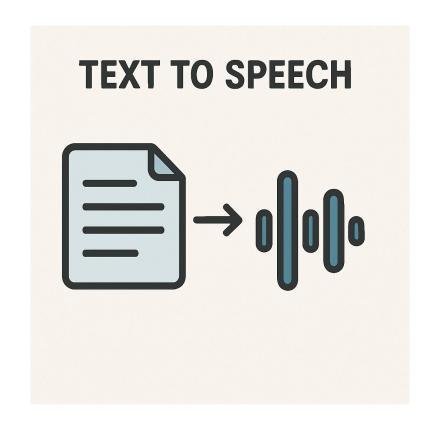


#### Whisper

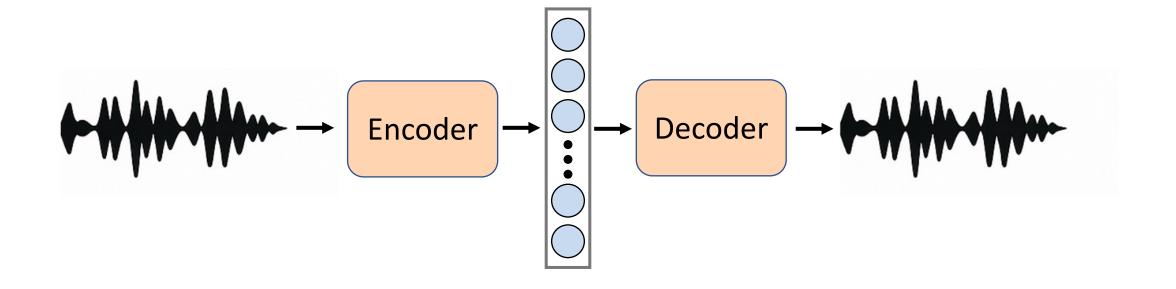
- Trained on 680K hours of multilingual, multitask web data
- Robust to accents, noise, and technical terms
- Supports multilingual transcription and translation to English
- Whisper doesn't
   outperform models on
   LibriSpeech but is
   significantly more robust in
   zero-shot settings, with 50%
   fewer errors across varied
   datasets.

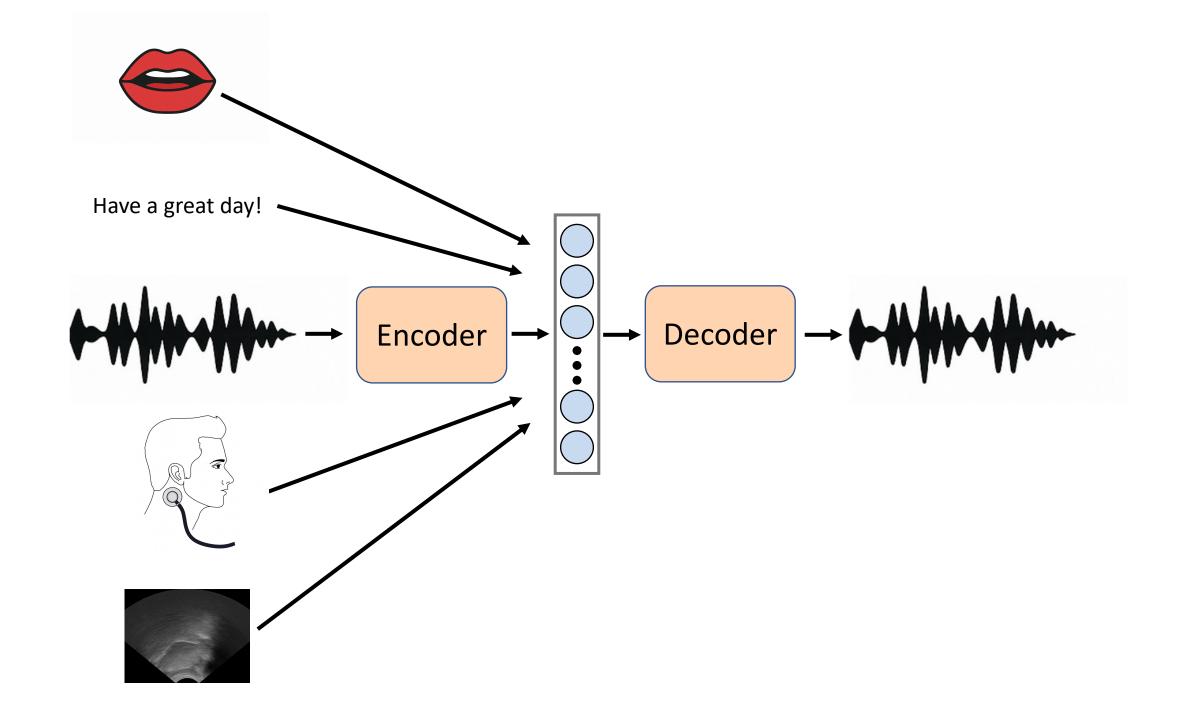


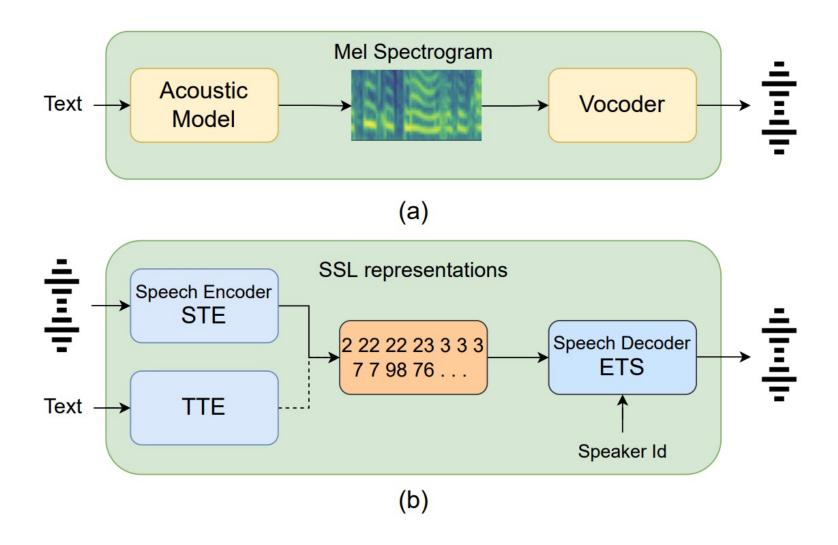
#### Thinking multimodal, opens-up possibilities



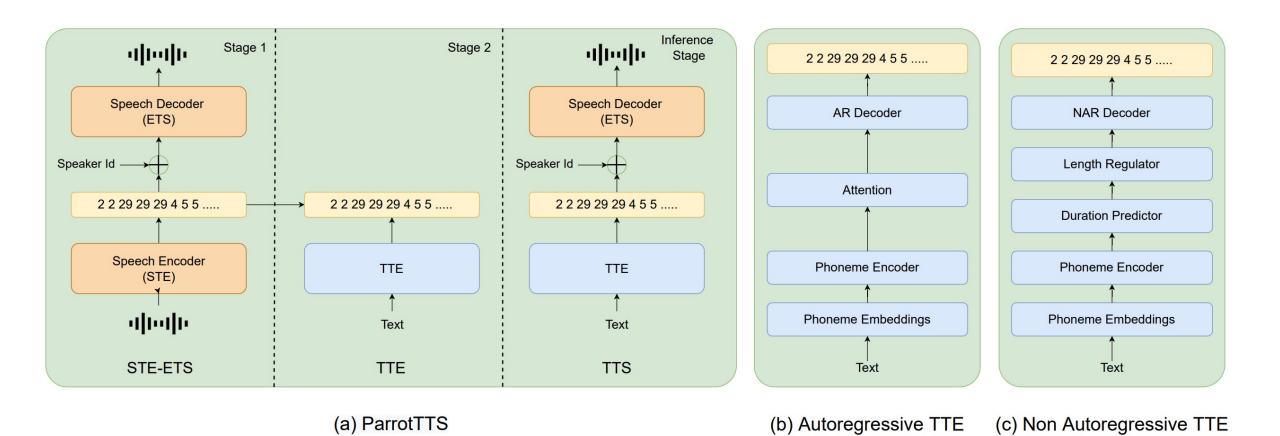
Vocal learning forms the first phase of infants starting to talk (Locke, 1996, 1994) by simply listening to sounds/speech. It is hypothesized (Kuhl and Meltzoff, 1996) that infants listening to ambient language store perceptually derived representations of the speech sounds they hear, which in turn serve as targets for the production of speech utterances. Interestingly, in this phase, the infant has no conception of text or linguistic rules, and speech is considered sufficient to influence speech production (Kuhl and Meltzoff, 1996) as can parrots (Locke, 1994).







Shah et al. ParrotTTS: Text-to-speech synthesis exploiting disentangled self-supervised representations. EACL Findings 2024



|                 | Model                               | MOS ↑ | WER↓  |
|-----------------|-------------------------------------|-------|-------|
| Traditional TTS | SS-FastSpeech2                      | 3.87  | 4.52  |
|                 | SS-Tacotron2                        | 3.90  | 4.59  |
|                 | FastSpeech2-SupASR                  | 3.78  | 4.72  |
|                 | Tacotron2-UnsupASR                  | 3.50  | 11.3  |
| WavThruVec      | SS-WavThruVec                       | 3.57  | 6.27  |
| VQ-VAE          | SS-VQ-VAES                          | 3.12  | 21.78 |
| ParrotTTS       | AR-TTE <sub>LJS</sub> +SS-ETS       | 3.85  | 4.80  |
|                 | $NAR-TTE_{LJS}+SS-ETS$              | 3.86  | 4.58  |
|                 | NAR-TTE $_{\frac{1}{2}LJS}$ +SS-ETS | 3.81  | 6.14  |

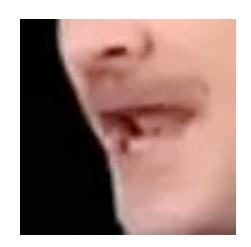
Table 1: Subjective and objective comparison of TTS models in the single speaker setting.

| Model                          | VCTK | MOS ↑ | WER ↓ | <b>EER</b> ↓ |
|--------------------------------|------|-------|-------|--------------|
| GT-Mel+Vocoder                 | Yes  | 4.12  | 2.25  | 2.12         |
| MS-FastSpeech2                 | Yes  | 3.62  | 5.32  | 3.21         |
| MS-FastSpeech2-SupASR          | No   | 3.58  | 6.65  | 3.85         |
| VC-FastSpeech2                 | No   | 3.41  | 7.44  | 8.18         |
| WavThruVec-MS                  | No   | 3.17  | 6.79  | 5.08         |
| NAR-TTE <sub>LJS</sub> +MS-ETS | No   | 3.78  | 6.53  | 4.38         |

Table 2: Comparison of the multi-speaker TTS models on the VCTK dataset. Column 2 indicates if the corresponding method uses VCTK transcripts while training.

#### Lip Reading





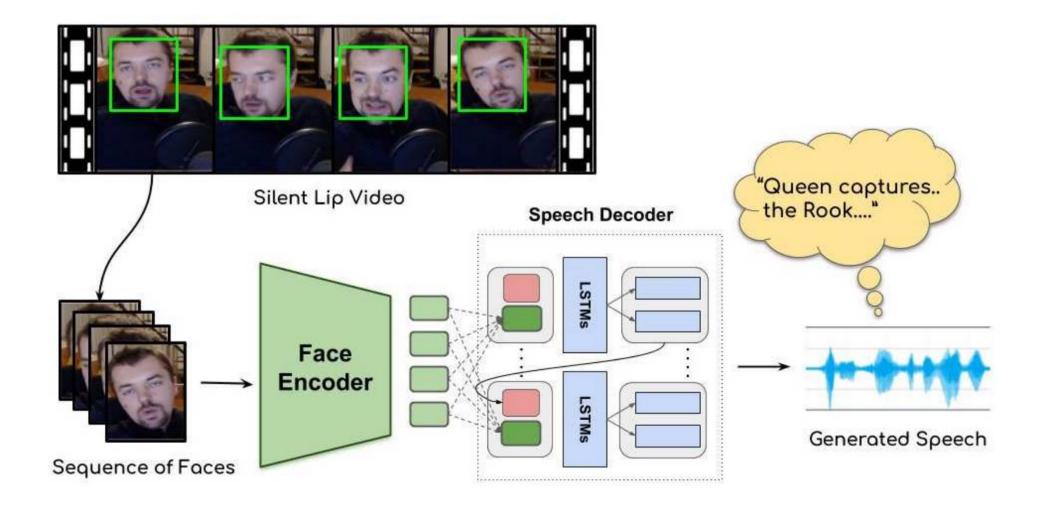


## Lip2Wav

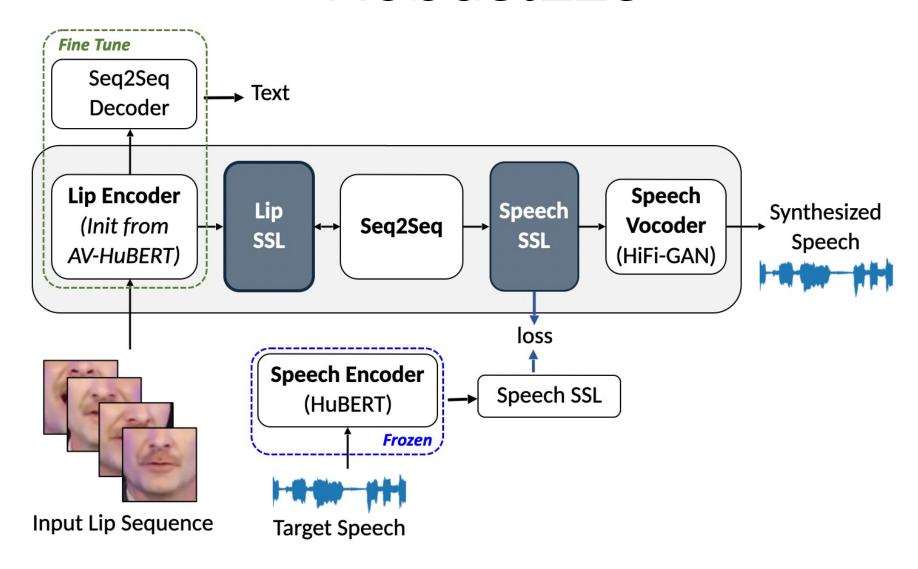
The speech you are hearing is completely generated from the lip movements



# Lip2Wav



#### RobustL2s



Sahipjohn et al. RobustL2S: Speaker-Specific Lip-to-speech Synthesis exploiting Self-Supervised Representations. APSIPA 2023

#### RobustL2S

TABLE II
PERFORMANCE COMPARISON IN CONSTRAINED-SPEAKER SETTING ON
GRID-4S DATASET

| Method                | STOI ↑ | ESTOI ↑ | WER ↓   |
|-----------------------|--------|---------|---------|
| Vid2speech [13]       | 0.491  | 0.335   | 44.92 % |
| Lip2AudSpec [15]      | 0.513  | 0.352   | 32.51 % |
| 1D GAN-based [17]     | 0.564  | 0.361   | 26.64 % |
| Vocoder-based [40]    | 0.648  | 0.455   | 23.33 % |
| Ephrat et al. [14]    | 0.659  | 0.376   | 27.83 % |
| Lip2Wav [5]           | 0.731  | 0.535   | 14.08 % |
| VAE-based [16]        | 0.724  | 0.540   | -       |
| VCA-GAN [19]          | 0.724  | 0.609   | 12.25 % |
| kim et al. [28], [46] | 0.738  | 0.579   | -       |
| RobustL2S             | 0.754  | 0.571   | 11.21 % |

TABLE III
PERFORMANCE COMPARISON IN CONSTRAINED-SPEAKER SETTING ON
TCD-TIMIT-3S DATASET

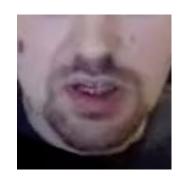
| Method             | STOI ↑ | ESTOI ↑ | WER ↓   |
|--------------------|--------|---------|---------|
| Vid2speech [13]    | 0.451  | 0.298   | 75.52 % |
| Lip2AudSpec [15]   | 0.450  | 0.316   | 61.86 % |
| 1D GAN-based [17]  | 0.511  | 0.321   | 49.13 % |
| Ephrat et al. [14] | 0.487  | 0.310   | 53.52 % |
| Lip2Wav [5]        | 0.558  | 0.365   | 31.26 % |
| VCA-GAN [19]       | 0.584  | 0.401   | -       |
| RobustL2S          | 0.596  | 0.452   | 29.03 % |

TABLE IV
PERFORMANCE COMPARISON IN SPEAKER-DEPENDENT SETTING ON LIP2WAY DATASET

| Speaker   | Method            | STOI ↑ | ESTOI ↑ |
|-----------|-------------------|--------|---------|
|           | Ephrat et al. [5] | 0.165  | 0.087   |
| Chemistry | GAN-based [47]    | 0.192  | 0.132   |
| Lectures  | Lip2Wav [5]       | 0.416  | 0.284   |
| (chem)    | Hong et al. [28]  | 0.566  | 0.429   |
|           | RobustL2S         | 0.583  | 0.397   |
|           | Ephrat et al. [5] | 0.184  | 0.098   |
| Chess     | GAN-based [47]    | 0.195  | 0.104   |
| Analysis  | Lip2Wav [5]       | 0.418  | 0.290   |
| (chess)   | Hong et al. [28]  | 0.506  | 0.334   |
|           | RobustL2S         | 0.517  | 0.340   |
|           | Ephrat et al. [5] | 0.112  | 0.043   |
| Deep      | GAN-based [47]    | 0.144  | 0.070   |
| Learning  | Lip2Wav [5]       | 0.282  | 0.183   |
| (dl)      | Hong et al. [28]  | 0.576  | 0.402   |
|           | RobustL2S         | 0.627  | 0.419   |
|           | Ephrat et al. [5] | 0.192  | 0.064   |
| Hardware  | GAN-based [47]    | 0.251  | 0.110   |
| Security  | Lip2Wav [5]       | 0.446  | 0.311   |
| (hs)      | Hong et al. [28]  | 0.504  | 0.337   |
|           | RobustL2S         | 0.511  | 0.337   |
|           | Ephrat et al. [5] | 0.143  | 0.064   |
| Ethical   | GAN-based [47]    | 0.171  | 0.089   |
| Hacking   | Lip2Wav [5]       | 0.369  | 0.220   |
| (eh)      | Hong et al. [28]  | 0.463  | 0.304   |
| 8.59 5.   | RobustL2S         | 0.493  | 0.277   |

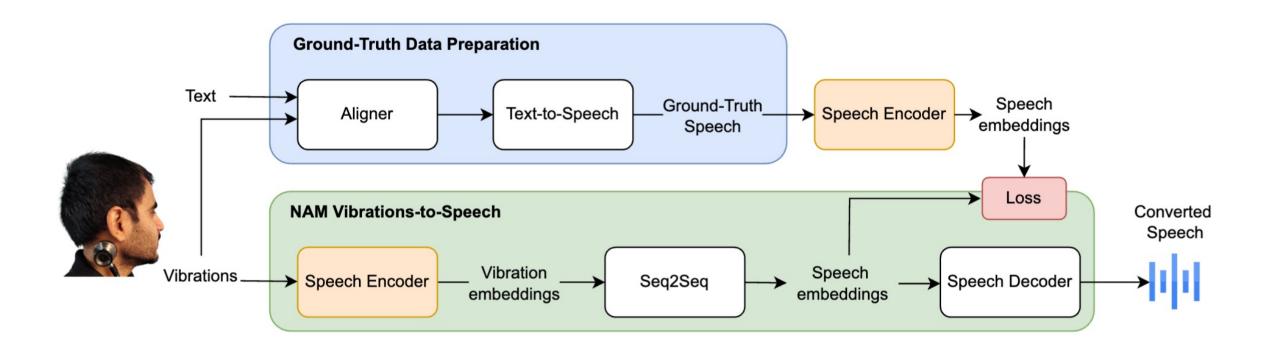
#### RobustL2S





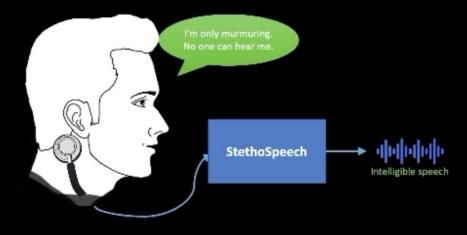


# StethoSpeech



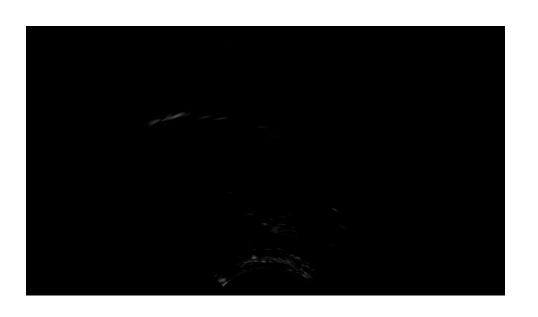
## StethoSpeech

StethoSpeech: Speech generation through a clinical stethoscope attached to the skin



#### Tongue Ultrasound to speech







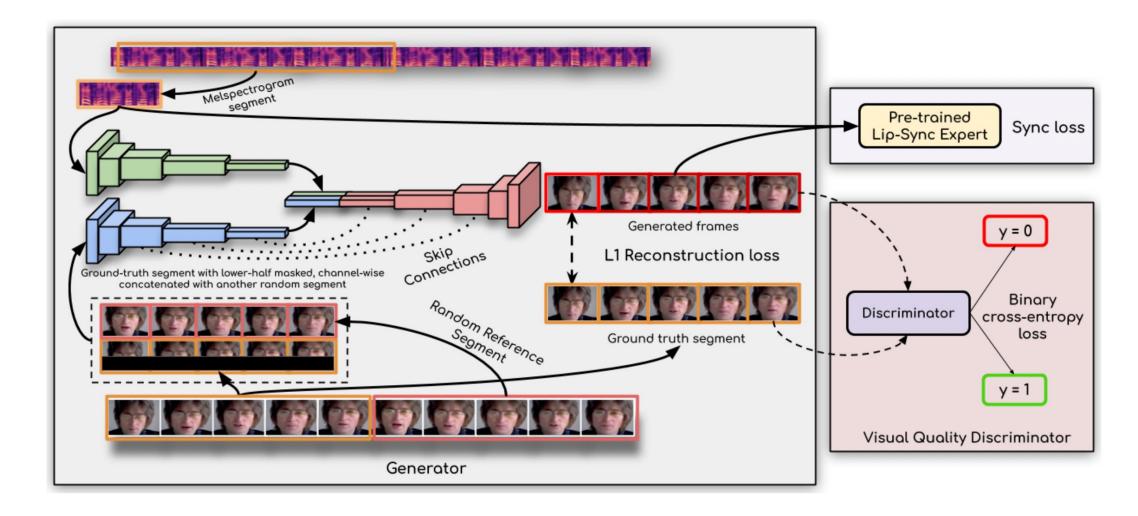
Prediction



**Ground Truth** 

Many fun/useful ideas and possibilities

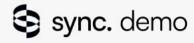
#### Wav2Lip



Prajwal et al. A Lip Sync Expert Is All You Need for Speech to Lip Generation In the Wild. ACM Multimedia 2020

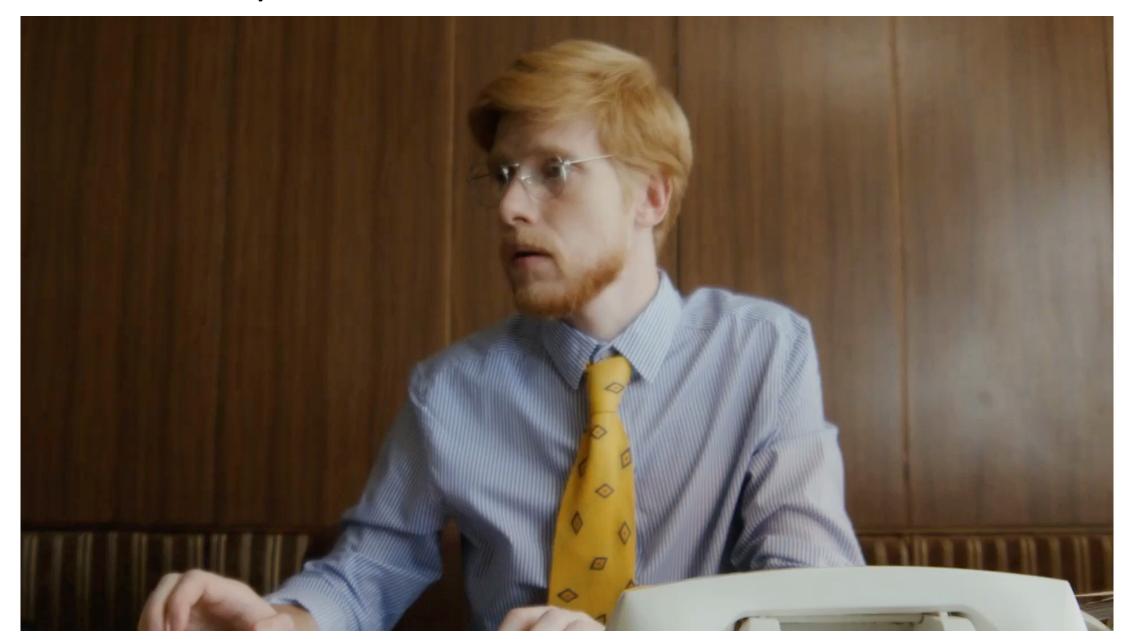
preserve **speaker style** while lipsyncing



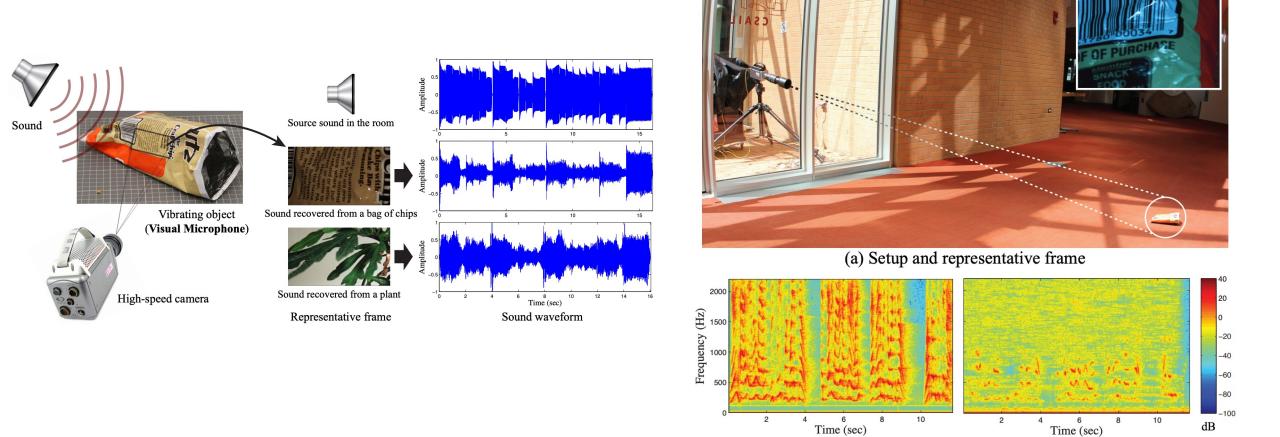




### Avatars: Synthesia and others



#### Visual microphone



Davis et al. The Visual Microphone: Passive Recovery of Sound from Video. ACM Transactions on Graphics. 2014

(b) Input sound

(c) Recovered sound

# The Visual Microphone: Passive Recovery of Sound from Video

Abe Davis
Michael Rubinstein
Neal Wadhwa
Gautham J. Mysore
Fredo Durand
William T. Freeman

#### Automated Cinematography





Original (Wide Angle Static)

Edited

#### AudioSet

#### There are 2,084,320 YouTube videos containing 527 labels

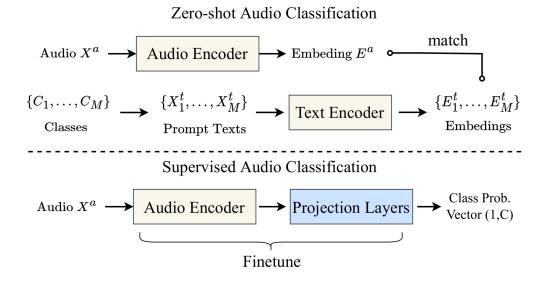
Type a sound to filter the dataset ho

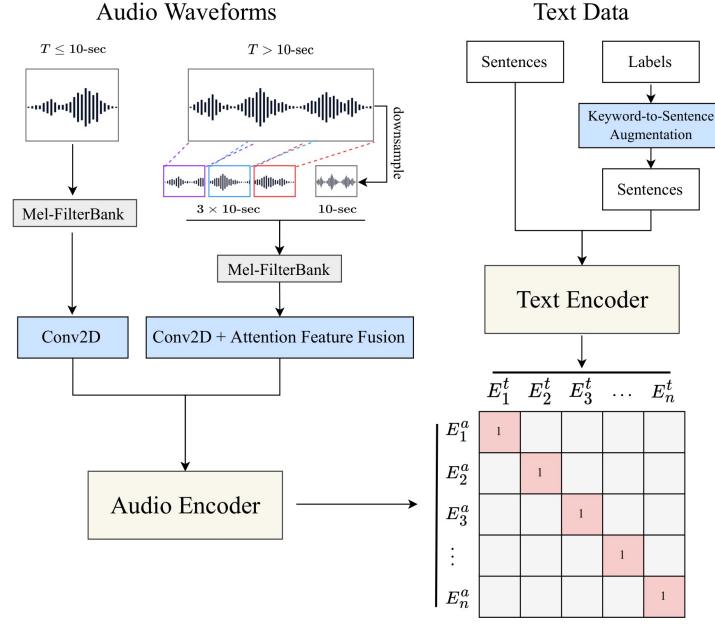
Show detailed breakdown? □

| Label                      | Quality estimate | ? • Number of videos |
|----------------------------|------------------|----------------------|
| Music                      | 100%             | 1,011,305            |
| Speech                     | 100%             | 1,010,480            |
| Vehicle                    | 100%             | 128,051              |
| Musical instrument         | 100%             | 117,343              |
| Plucked string instrument  | 100%             | 44,565               |
| Singing                    | 100%             | 42,493               |
| Car                        | 100%             | 41,554               |
| Animal                     | 100%             | 40,758               |
| Outside, rural or natural  | 100%             | 35,731               |
| Violin, fiddle             | 100%             | 28,125               |
| Bird                       | 100%             | 26,894               |
| Drum                       | 100%             | 20,246               |
| Engine                     | 100%             | 16,245               |
| Narration, monologue       | 100%             | 15,590               |
| Drum kit                   | 100%             | 15,169               |
| Acoustic guitar            | 100%             | 14,568               |
| Dog                        | 100%             | 13,705               |
| Child speech, kid speaking | 100%             | 11,816               |
| Bass drum                  | 100%             | 9,292                |

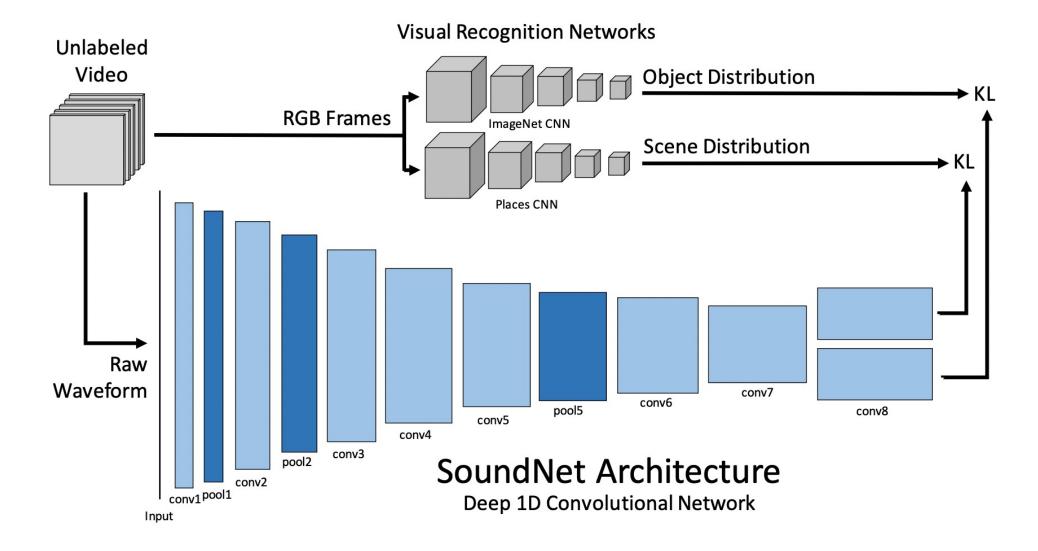
https://research.google.com/audioset/

#### CLAP model





#### Multimodal distillation



Aytar et al. SoundNet: Learning Sound Representations from Unlabeled Video. Neurips 2016

# Thank you!









